Introduction to Fuzzy and Possibilistic Optimization

نویسندگان

  • Weldon A. Lodwick
  • Elizabeth A. Untiedt
چکیده

Deterministic optimization is a normative process which extracts the best from a set of options, usually under constraints. It is arguably true that optimization is one of the most used areas of mathematical applications. It is the thesis of this book that applied mathematical programming problems should be solved predominantly by using a fuzzy and possibilistic approaches. Rommelfanger ([42], p. 295), states that the only operations research methods that is widely applied is linear programming. He goes on to state that even though this is true, of the 167 production (linear) programming systems investigated and surveyed by Fandel [18], only 13 of these were “purely” (my interpretation) linear programming systems. Thus, Rommelfanger concludes that even with this most highly used and applied operations research method, there is a discrepancy between classical linear programming and what is applied. Deterministic and stochastic optimization models require well-defined input parameters (coefficients, right-hand side values), relationships (inequalities, equalities), and preferences (real valued functions to maximize, minimize) either as real numbers or real valued distribution functions. Any large scale model requires significant data gathering efforts. If the model has projections of future values, it is clear that real numbers and real valued distributions are inadequate representations of parameters, even assuming that the model correctly captures the underlying system. It is also known from mathematical programming theory that only a few of the variables and constraints are necessary to describe an optimal solution (basic variables and active constraints), assuming a correct deterministic normative criterion (objective function). The ratio of variables that are basic and constraints that are active compared to the total becomes smaller, in general, as the model increases in size since in general large-scale models tend to become more sparse. Thus, only a few parameters need to be obtained precisely. Of course the problem is that it is not known a priori which variables will be basic and which constraints will be active.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions

The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third ...

متن کامل

An Interactive Possibilistic Programming Approach to Designing a 3PL Supply Chain Network Under Uncertainty

The design of closed-loop supply chain networks has attracted increasing attention in recent decades with environmental concerns and commercial factors. Due to the rapid growth of knowledge and technology, the complexity of the supply chain operations is increasing daily and organizations are faced with numerous challenges and risks in their management. Most organizations with limited resources...

متن کامل

Assessment of Green Supplier Development Programs by a New Group Decision-Making Model Considering Possibilistic Statistical Uncertainty

The assessment and selection of green supplier development programs are an intriguing and functional research subject. This paper proposes a group decision-making approach considering possibilistic statistical concepts under uncertainty to assess green supplier development programs (GSDPs) via interval-valued fuzzy sets (IVFSs). Possibility theory is employed to regard uncertainty by IVFSs. A n...

متن کامل

A Possibilistic Approach to Bottleneck Combinatorial Optimization Problems with Ill-Known Weights

In this paper a general bottleneck combinatorial optimization problem with uncertain element weights modeled by fuzzy intervals is considered. A rigorous possibilistic formalization of the problem and solution concepts in this setting that lead to finding robust solutions under fuzzy weights are given. Some algorithms for finding a solution according to the introduced concepts and evaluating op...

متن کامل

Fuzzy portfolio optimization model under real constraints

This paper discusses a multi-objective portfolio optimization problem for practical portfolio selection in fuzzy environment, in which the return rates and the turnover rates are characterized by fuzzy variables. Based on the possibility theory, fuzzy return and liquidity are quantified by possibilistic mean, and market risk and liquidity risk are measured by lower possibilistic semivariance. T...

متن کامل

Sustainable Energy Planning By A Group Decision Model With Entropy Weighting Method Under Interval-Valued Fuzzy Sets And Possibilistic Statistical Concepts

In this paper, a new interval-valued fuzzy multi-criteria group decision-making model is proposed to evaluate each of the energy plans with sustainable development criteria for proper energy plan selection. The purpose of this study is divided into two parts: first, it is aimed at determining the weights of evaluation criteria for sustainable energy planning and second at rating sustainable ene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010